If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2-156.8x-109=0
a = 56; b = -156.8; c = -109;
Δ = b2-4ac
Δ = -156.82-4·56·(-109)
Δ = 49002.24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-156.8)-\sqrt{49002.24}}{2*56}=\frac{156.8-\sqrt{49002.24}}{112} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-156.8)+\sqrt{49002.24}}{2*56}=\frac{156.8+\sqrt{49002.24}}{112} $
| 1/2m+3/4m=10 | | 9.5x=152 | | r/3-(-4)=5 | | 200(340-x)=140(340+x) | | 14=20-3c | | m^210m+9=0 | | -4=-2z+2 | | 55.75x^2-155.8x+109=0 | | 124+0.29x=240 | | 1.24+0.29x=240 | | 36x^2-72x=0 | | 15=z/3+11 | | 30y-5y-8y=8 | | 3^2x=18 | | 11m+21=109 | | 2m-(-60=16 | | (x-3)(2x+1)+15=2x^2+x+6 | | (6÷n)-15=30 | | b4-+12=13 | | s+68=5s | | 2n+2.6=5.4 | | 2x(x+33)=90 | | 2w+4(7+6w)=-14 | | p/2-3=-2 | | 43+x=72 | | 4z-6=3z+9 | | 3x/6-42=96 | | 9-12x-3x^2=0 | | 11-3u=8 | | 4x/2+88=28 | | 17-4w=1 | | 4.9x^2+4x-400=0 |